Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 30(8): 103740, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37538349

RESUMO

Due to rising populations and human activities, heavy metals (HM) toxicity has become a serious problem for all life forms. The present study deals with isolating and identifying lead-resistant bacteria from contaminated wastewater of tanneries effluents. Two isolated strains were identified as Bacillus cereus (ID1), and Bacillus sp. (ID3), and both strains resisted a 25 mM concentration of Lead nitrate (Pb (NO3)2). After four days of treatment, Bacillus cereus (ID1) showed 80% lead uptake, and Bacillus sp. (ID3) showed 88%. Lead uptake was confirmed by Energy dispersive X-Ray (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) showed that structural alterations had occurred in functional groups of the treated samples compared to the controls. Our research indicates that these Bacillus strains may be useful in bioremediating heavy metals from polluted environments. Further investigation into the processes involved in the uptake and homeostasis of heavy metals by these strains is required, as is the identification of the genes and enzymes responsible for Pb-bioremediation.

2.
Saudi J Biol Sci ; 29(4): 2878-2885, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531181

RESUMO

The chromate resistant Gram-positive Bacillus cereus strain b-525k was isolated from tannery effluents, demonstrating optimal propagation at 37 °C and pH 8. The minimum inhibitory concentration (MIC) test showed that B. cereus b-525k can tolerate up to 32 mM Cr6+, and also exhibit the ability to resist other toxic metal ions including Pb2+ (23 mM), As3+ (21 mM), Zn2+ (17 mM), Cd2+ (5 mM), Cu2+ (2 mM), and Ni2+ (3 mM) with the resistance order as Cr 6+ > Pb2+ > As3+ >Zn2+ >Cd2+ >Ni2+ >Cu2+. B. cereus b-525k showed maximum biosorption efficiency (q) of 51 mM Cr6+/g after 6 days. Chromate stress elicited pronounced production of antioxidant enzymes such as catalase (CAT) 191%, glutathione transferase (GST) 192%, superoxide dismutase (SOD) 161%, peroxidase (POX) 199%, and ascorbate peroxidase (APOX) (154%). Within B. cereus b-525k, the influence of Cr6+ stress (2 mM) did stimulate rise in levels of GSH (907%) and non-protein thiols (541%) was measured as compared to the control (without any Cr6+ stress) which markedly nullifies Cr6+ generated oxidative stress. The pilot scale experiments utilizing original tannery effluent showed that B. cereus b-525k could remove 99% Cr6+ in 6 days, thus, it could be a potential candidate to reclaim the chromate contaminated sites.

3.
Opt Express ; 29(3): 3873-3881, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770977

RESUMO

Aflatoxin M1 (AFM1) is a carcinogenic compound commonly found in milk in excess of the WHO permissible limit, especially in developing countries. Currently, state-of-the-art tests for detecting AFM1 in milk include chromatographic systems and enzyme-linked-immunosorbent assays. Although these tests provide fair accuracy and sensitivity, they require trained laboratory personnel, expensive infrastructure, and many hours to produce final results. Optical sensors leveraging spectroscopy have a tremendous potential of providing an accurate, real-time, and specialist-free AFM1 detector. Despite this, AFM1 sensing demonstrations using optical spectroscopy are still immature. Here, we demonstrate an optical sensor that employs the principle of cavity attenuated phase shift spectroscopy in optical fiber cavities for rapid AFM1 detection in aqueous solutions at 1550 nm. The sensor constitutes a cavity built by two fiber Bragg gratings. We splice a tapered fiber of < 10 µm waist inside the cavity as a sensing head. For ensuring specific binding of AFM1 in a solution, the tapered fiber is functionalized with DNA aptamers followed by validation of the conjugation via FTIR, TGA, and EDX analyses. We then detect AFM1 in a solution by measuring the phase shift between a sinusoidally modulated laser input and the sensor output at resonant frequencies of the cavity. Our results show that the sensor has the detection limit of 20 ng/L (20 ppt), which is well below both the U.S. and the European safety regulations. We anticipate that the present work will lead towards a rapid and accurate AFM1 sensor, especially for low-resource settings.


Assuntos
Aflatoxina M1/análise , Contaminação de Alimentos/análise , Espectrometria por Raios X/instrumentação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...